If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21n^2+21n=0
a = 21; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·21·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*21}=\frac{-42}{42} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*21}=\frac{0}{42} =0 $
| y/9=8/11 | | -2x-1=-9x+6 | | 10x-6=4x+4 | | 2(3p+8)=-2(2-p) | | (p+2)−4=14 | | 4(4=7x)=-208 | | 8x=494x-3)=4(6x+4) | | -28+5x=17 | | .5(6j+10)=3j+5 | | x^2=81=0 | | -0.1(5x+4)=0.04-0.01(x+4) | | 4x-7x+1=0 | | v-1.84=9.34 | | 3x/4+7=-(-x-4) | | 2x-(2x-6)=2 | | 1/2(3)+7=y | | -7=17-4x | | -11+3x=-x+1+8x | | -29-5m=3(-4+4m) | | 7w+14=56 | | 20+4(3x−5)+2x=2820+4(3x−5)+2x=28 | | 2x(31x6)-4=16 | | 11x-10x=3 | | 38=7k=8(k=4) | | 2x=12-0 | | 15n-14n=6 | | 12k+6=4k–8 | | 9b-4b=20 | | 6(4t+12)=8(3t-1) | | 2+4x+41+-5+8x=180 | | -32+6x=22 | | X/5-7=x/5+2 |